
Data Intensive Computing

Data Storage

Distributed File Systems(GFS)

Files are split into Chunks

Master, Chunk Servers, Client

Read

Write

Metadata Management
lookup table mapping pathnames to metadata

read lock on internal nodes, read/write lock on 
leaf 

Replica Placement

Garbage Collection: timestamp

NoSQL Database: easy and frequent changes

CAP

Data Model

key/value

Column-oriented: value has multople attributes

Document

Graph

BigTable

Column-oriented

master, tablet server, client library

GFS, SSTable, Chubby

Tablet Serving

Finding a tablet

CP

if a tablet server fails, its portion of data is 
temporarily unavailable until a new server
is assigned.

Consistency: GFS

Cassandra

Column-oriented

Consistency hashing: Hash both data and node ids 
using the same hash function in a same id space Replication

Gossip-based mechanism: eventual consistency 

AP

Neo4j

Graph

Cypher

CA

Data Processing

Parallel Processing

MapReduce: expensive and slow
always go to disk and HDFS

Programming Model

Mapper

Reducer

Shuffle and Sort

Execution Framework

Local Aggregation: Merge partially data before 
it is sent over the network to the reducer

Joining

Reduce-side: two or more large datasets

Map-side: one of the datasets is small enough 
to cache

Sorting: For multiple Reducers we need to 
choose a partitioning function
key1 < key2 ⇒ partition(key1) ≤ partition(key2)

The buffered pairs are periodically written to 
local disk.
They are partitioned into R regions (hash(key) 
mod R).

Failure Tolerance

Worker: periodic heartbeats
Re-execute

Master: State is periodically checkpointed

Spark

RDD
Immutable collections

Partitions of an RDD can be stored on different 
nodes of a cluster.

RDD operations
Transformations: build the logical plan

Actions: trigger the computation

Lineage graph: logical transformation plan

No replication

Fault tolerance

Recompute only the lost partitions of an RDD

Caching: memory
checkpoint saves an RDD to disk.

Checkpointed data is not removed after 
SparkContext is destroyed.

RDD dependencies encode when data must move 
across network

pipeline

shuffle

Job: one action

Stage:  groups of tasks that can be executed 
together

Task: All of the tasks in one stage execute the 
same code on a different piece of the data

Structured Data Processing(Spark SQL)

RDD vs. DataFrame vs. DataSet

RDD: don’t know anything about the schema

DataFrame: Equivalent to a table in a relational 
database

Transformation: select, selectExpr, filter, where, 
distinct, withColumn, withColumnRenamed, 
drop, udf

Action: collect, count, first, head, show, take

DataFrames elements are Rows, which are 
generic untyped JVM objects

Scala compiler cannot type check Spark SQL 
schemas in DataFrames

DataSet: typed distributed collections of data type DataFrame = Dataset[Row]

Aggregation

summarize: count, countDistinct, first, last, min, 
max, sum, avg

group by

windowing

Join
Shuffle join: big table to big table
Every node talks to every other node

Broadcast join: big table to small table
fit into the memory of a single worker node

SQL queries: on views/tables via the method sql 
on the SparkSession object

Stream Data Processing

Data stream, unbounded data, tuples

SPS vs. DBMS

DBMS: Store and index data before processing it.
Process data only when explicitly asked by the 
users.

SPS: Processing information as it flows, without 
storing them persistently

Event-time vs. processing time

Triggering determines when in processing time the 
results of groupings are emitted as panes.

time-based triggering

data-driven triggering

Windowing determines where in event time data 
are grouped together for processing.

time-based windowing

watermark

Fixed window, trigger at period (micro-batch)

Fixed window, trigger at watermark (streaming)

Messaging system and partitioned logs

Message broker: Decoupling producers and 
consumers

In typical message brokers, once a message is 
consumed, it is deleted.

Log-based message brokers durably store all 
events in a sequential log

Kafka: distributed, topic oriented, partitioned, 
replicated log service

Logs, topics, partition

Topics are logical collections of partitions (the 
physical files)

Ordered

Append only

Immutable

One broker is the leader of a partition

Kafka architecture: producer, consumer, broker, 
coordinator

Zookeeper: Keeping track of the consumed offset 
of each partition.

Brokers are sateless: no metadata for consumers-
producers in brokers.

Consumers are responsible for keeping track of 
offsets

Messages from a single partition are delivered to a 
consumer in order

Guarantees at-least-once delivery

Mini-batch processing: Run a streaming 
computation as a series of very small, 
deterministic batch jobs

DStream: sequence of RDDs

RDD and window operations tumbling window: slide interval = window length

Spark supports stateful streams.

Structured streaming

Graph Data Processing

PageRank

Problem with MapReduce

MapReduce does not directly support iterative 
algorithms.

Materializations of intermediate results at every 
MapReduce iteration harm performance.

vertex: individually computes value, depend on 
neighbors

Pregel: BSP, synchronous parallel model, message 
passing

GraphLab: asynchronous model, shared memory, 
GAS

Gather: accumulate information from 
neighborhood.

Apply: apply the accumulated value to center 
vertex.

Scatter: update adjacent edges and vertices.

table

Graphx: unifies data-parallel and graph-parallel 
systems.

Resource Management

Monolithic scheduler: centralized scheduling algorithm 
for all jobs

Optimal Schedule

Complex, hard to anticipate future frameworks, 
refactor for existing frameworks

Borg

Request-based

Cell, Job, Task, and Alloc

BorgMaster, Borglet

Container orchestration tools: Kubernetes (based 
on Borg), Marathon (runs on Mesos)

Two-Level scheduler: separate resource allocation and 
task placement.
An active resource manager offers compute resources 
to multiple parallel, independent scheduler frameworks.

Simple, easy to port

Not optimal

Mesos

Framework->jobs->tasks(allocation)

Offer-based

Master sends resource offers to frameworks.

Frameworks select which offers to accept and 
which tasks to run.

Max-Min fairness

Share guarantee
Each user can get at least 1/n of the resource.

But will get less if her demand is less.

Strategy proof

Users are not better off by asking for more than 
they need.

Users have no reason to lie.

multiple resources
Problem: violates share grantee

DRF

YARN

Request-based

Resource Manager

One per cluster (Central: global view)

Job requests are submitted to RM.
To start a job, RM finds a container to spawn 
AM.

Only handles an overall resource profile for 
each job.
Local optimization is up to the job

Application Manager

The head of a job.

Runs as a container.

Request resources from RM

Node Manager

The worker daemon.

Registers with RM.

One per node.

Report resources to RM

DataLake

Data Warehouses

ETL

ACID

not support unstructured or semi-structured

not support data science and ML

Data Lakes

all raw data

ETL to warehouse

directly readable in ML

complex architecture

data reliability suffers

Timeliness suffer: Extra ETL steps before data 
is available in data warehouses

Lakehouse

Metadata layers for Data Lakes

DeltaLog

Provides ACID transactions.

Provides scalable metadata handling.

Provides time travel and versioning.

Unifies streaming and batch data processing.

New query engine designs

Declarative access for data science and ML

Data Lake stores all data irrespective of the 
source and its structure whereas Data
Warehouse stores data in quantitative metrics 
with their attributes.

Data Lake defines the schema after data is 
stored whereas Data Warehouse defines
the schema before data is stored.

Data Lake uses the ELT process while the Data 
Warehouse uses ETL process.


